

EU-RL LM European Union Reference Laboratory for Listeria monocytogenes

EC REGULATION AND TECHNICAL GUIDANCE DOCUMENT

Hélène BERGIS

General requirements of the EC Regulation

- "Food Business Operators (FBOs) shall ensure that foodstuffs comply with the relevant microbiological criteria set out in Annex I."
- "...the FBOs responsible for the manufacture of the product shallconduct studies to investigate compliance with the criteria throughoutthe shelf-life. "
- "In particular,for ready-to-eat (RTE) foods that are able to support the growth of *Listeria monocytogenes*....."

Listeria monocytogenes is a concern for **RTE foods** because :

- ✓ they can be contaminated by this bacteria
- ✓ they may support the growth of L. monocytogenes

✓ they will be eaten without cooking or other processing effective to eliminate or reduce the level of this pathogen

 Annex I of this Regulation lays down microbiological criteria for *L. monocytogenes* in RTE foods

Food safety criteria defined for RTE foods / L. monocytogenes

(extract from Annex I of Regulation (EC) No 2073/2005)

Food category	Sampling- plan		Limits	Stage where the criterion applies	
	n	С	$\mathbf{m} = \mathbf{M}$		
1.1 RTE foods intended for infants and RTE foods for special medical purposes	10	0	Absence in 25 g	Products placed on the market during their shelf-life	
1.2 RTE foods able to support the growth of <i>L. monocytogenes</i>	5	0	100 cfu/g	Products placed on the market during their shelf-life	
	5	0	Absence in 25 g	Before the food has left the immediate control of the food business operator, who has produced it	
1.3 RTE foods unable to support the growth of <i>L</i> . <i>monocytogenes</i>	5	0	100 cfu/g	Products placed on the market during their shelf-life	

Annex II of this regulation specifies the studies that shall be conducted, when necessary,

to demonstrate that the products comply with the quantitative criteria for *L. monocytogenes*

- predictive microbiology
- challenge-tests
- durability studies
- BUT, Annex II does not describe
 - how to choose the appropriate approach and
 - how to conduct such studies

To help **FBOs** and **laboratories** to deal with shelf-life studies related to *L. monocytogenes* in RTE foods

2 guidance documents have been produced

Guidance document on *Listeria monocytogenes* shelf-life studies for readyto-eat foods, under Regulation (EC) NO 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs

http://ec.europa.eu/food/food/biosafety/salmonella/docs/guidoc_listeria_monocytogenes_en.pdf

- This guidance document intended for FBOs, was released by DG-SANCO
- It helps FBOs to answer to the question:

When and which shelf-life studies are needed?

□ Technical guidance document on shelf-life studies for *Listeria monocytogenes i*n ready-to-eat foods

http://ec.europa.eu/food/biosafety/salmonella/docs/shelflife_listeria_monocytogenes_en.pdf

• This guidance document intended for laboratories, was released by the CRL *Listeria monocytogenes*

• It provides both detailed and practical information on how to conduct shelf-life studies for *Listeria monocytogenes* in ready-to-eat foods to ensure conformance to the microbiological criteria set out in Regulation (EC) 2073/05

• It helps the laboratories to implement:

- challenge tests assessing a growth potential

- challenge tests assessing the maximal growth rate
- durability studies.

➢ This guidance document was prepared by the CRL Listeria monocytogenes in collaboration with a working group of 8 National Reference Laboratories (NRLs) from:

- Belgium
- Ireland
- Italy
- Poland

- Romania
- Slovakia
- Sweden
- The Netherlands

This technical guidance document consists of the following sections:

- Challenge tests assessing a growth potential
- Challenge tests assessing the maximum growth rate
- Durability studies

This test aims to answer to 2 questions:

Is the bacteria able to grow in the considered food?

If the answer is « YES", what is the range of the growth?

Challenge test assessing growth potential (δ)

Is a laboratory test based on the growth of a bacteria in a food:

- Artificially contaminated
- Stored under foreseeable conditions from production to consumption

Growth potential is calculated according to the formula:

 $\delta = ([L.m] \text{ at the end of the test}) - ([L.m] \text{ at the beginning of the test})$

- The growth potential can be used:
 - 1. To determine if a food permits the growth of *L.m*
 - 2. To set up the concentration of *L.m* at the end of the shelf-life according to the concentration at the plant
 - 3. To set the concentration **at the production** according to the limit of 100 cfu/g at the end of the shelf-life

The growth potential (δ) depends on:

Intrinsic characteristics of the food: pH, NaCl content, a_w, conservatives, associated microflora, structure …

Extrinsic parameters: storage temperature, gas atmosphere

The inoculated strain (s) : strains variation

The physiological state of the bacteria: cold stress, osmotic stress ...

The shelf-life of the food

Points to take into consideration

- Product characteristics and shelf life of the product
- Number of batches
- Choice of the strains
- Preparation of the inoculum
- Minimal number of test units per batch
- Inoculation of the test units
- Storage conditions for the inoculated foodstuff
- Measurement of physical-chemical characteristics
- Microbiological analyses: detection and enumeration methods
- Calculation of the growth potential

Point 1: product characteristics and shelf-life

Need to collect data from the FBO on the concerned RTE food

- Composition of the RTE food
- Physico-chemical characteristics (pH, aw, …)
- Total microflora and associated microflora
- Packaging condition
- Shelf-life of the RTE food

Point 2: number of batches

At least 3 different batches are tested (variability, representative of the production period)

Point 3: choice of the strains

The test should be performed with a mixture of at least 3 strains

One of them is a reference strain

The others are isolated from the same food or a similar food

Point 4: preparation of the inoculum

2 subcultures are made until to reach the early stationary phase

 \rightarrow The 1st subculture: in optimal condition

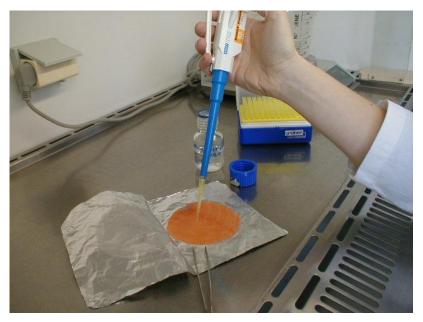
 \rightarrow The 2nd subculture: at a temperature close to the temperature of the product, to adapt the strain to the condition of the product

The 2nd subcultures of each strain (3) are mixed in equal quantity

✤ Appropriate dilutions of the mixture of the strains are made in physiological water, to obtain a contamination level between 50 – 100 cfu/g

Point 5: minimal number of test units per batch

	Day 0	Day end
Determination of the concentration of Listeria mono.	3	3
Determination of the concentration of associated microflora	3	3
Determination of physico-chemical characteristics	3*	3*
Detection/enumeration of <i>L.m</i> in blank samples (optional)	3	3


* Only 1 unit, if the product is homogeneous

Point 6: inoculation of the test units

in depth: for food considered homogeneous (ground foodstuff)

✤ at the surface: to mimic, for example, a contamination during the process of a specific part of the food (e.g. smoked salmon during slicing).

Workshop Listeria monocytogenes/ RTE Foods - Cyprus- 1 to 3 November 2011

Point 7: storage conditions

Reflect the reasonably foreseeable conditions of temperature from production to consumption

		Storage (incubation) duration		
Stage of cold chain Storage (incubation) temperature		Shelf life Shelf life		
		≤ 21 days > 21 days		
From the manufacture until the arrival to the display cabinet	Temperature Or if justified by not 8°C detailed known information*	One third of Duration justified Or if the total shelf by detailed not life of the 7 days information known product		
Retail: Display cabinet	Temperature Or if justified by not 12°C detailed known information*	Duration justified Or if One third of by detailed not life of the 7½ (shelf life – information known product		
Consumer storage	Temperature Or if justified by not 12°C detailed known information*	Duration justified Or if One third of by detailed not life of the 7 days) information known product		

*Temperature or duration justified by detailed information: the 75th percentile of the observations

Point 8: measurement of physico-chemical characteristics

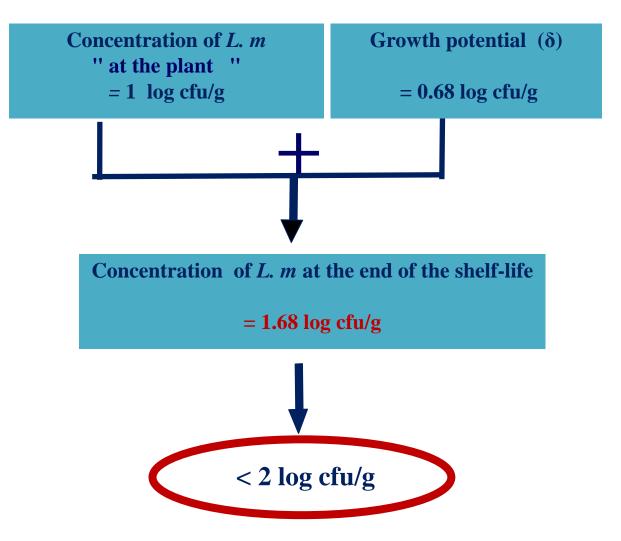
According to the standard methods

Point 9: microbiological analyses

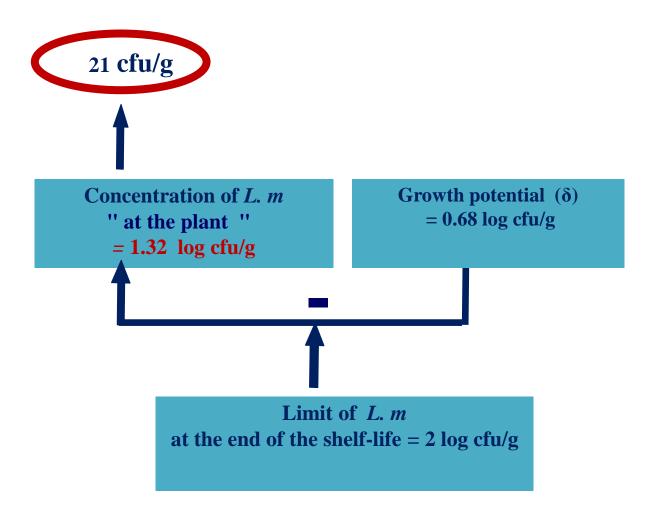
- For L. monocytogenes (detection and enumeration): ISO method or validated methods
- For associated microflora: ISO, CEN, or national standards

Point 10: calculation of the growth potential

For each batch, calculate the difference between the median at day end and the median at day 0.


	Day	Concentration (cfu/g)	Concentration (log ₁₀ cfu/g)	Difference	
		25	1.40		
	D0	20	1.30		
1		55	1.74	6.00	
1		100	2.00	0.88	
	Dend	210	2.33		
		190	2.28		
		60	1.78		
	D0	30	1.48		
2	2	50	1.70		
2		250	2.40	0.84	
	Dend	350	2.54		
		390	2.59		
		20	1.30		
	D0	25	1.40		
3		30	1.48	0.32	
3		43	1.63	0.32	
	Dend	52	1.72		
		76	1.88		

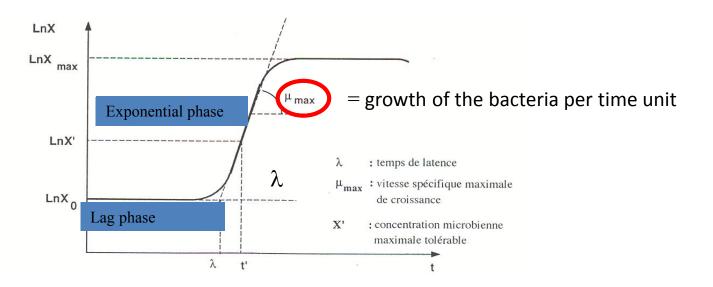
Point 11: exploitation of the results


- ➢ Is the food able or not to support the growth of *Listeria mono.* ?
 - If $\delta < 0.5 \log_{10} cfu/g$, it is assumed that the food is **not able to** support the growth of L.monocytogenes

• If $\delta \ge 0.5 \log_{10} cfu/g$, it is assumed that the food is able to support the growth of L.monocytogenes

***** Use of the growth potential: Example 1

***** Use of the growth potential: Example 2



Advantages vs disadvantages

- Advantage: it is relatively simple to implement.
- Disadvantage: the exploitation of the result is limited.

Challenge test to assess the maximum growth rate (μ_{max})

- Is a laboratory test based on the growth of a bacteria in a food:
 - Artificially contaminated
 - Stored at a fixed temperature

The maximum growth rate (μ_{max}) depends on:

✤ Intrinsic characteristics : pH, NaCl content, a_w, conservatives, associated microflora …

Extrinsic factors: temperature profile, gas atmosphere

The inoculated strain

Points to take into consideration

- Product characteristics
- Number of batches
- Choice of the strains
- Preparation of the inoculum
- Number of test units per batch
- Inoculation of the test units
- Storage conditions for the inoculated foodstuff
- Measurement of physico-chemical characteristics
- Microbiological analyses: detection and enumeration methods
- Calculation of the maximum growth rate

Point 3: choice of the strains

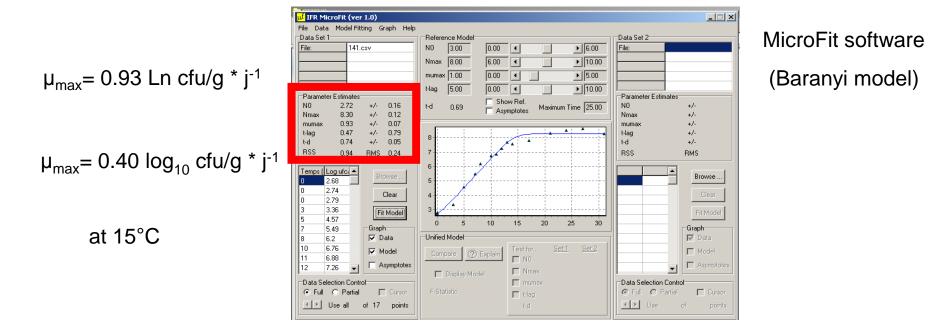
- Test each batch with 2 strains, separetely
- ✤ 2 fastest strains , among isolates from the same food or a similar food

Point 4: preparation of the inoculum

- ✤ 2 subcultures: in optimal condition until the early stationary phase
- Successive dilutions of 2nd subculture in physiological water, in order to obtain a target level of inoculation about 100 cfu/g

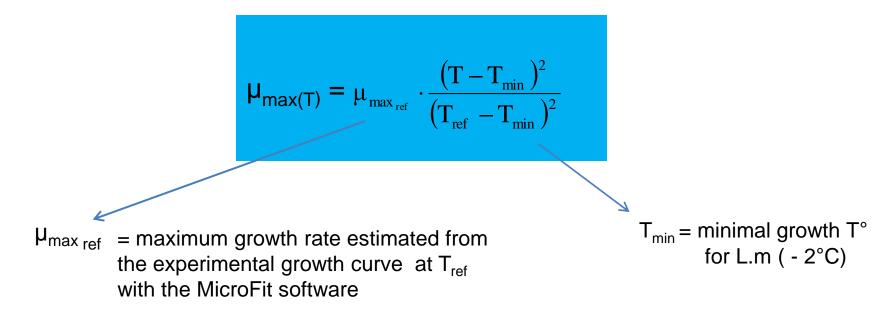
Minimal number of test units per batch

	Test units
Determination of the concentration of L.m	10 to 15
Detection at "day 0" and enumeration at "day end" of <i>L.m</i> in blank samples	3 + 3
Determination of physico-chemical characteristics	3* + 3*
Determination of the concentration of the associated microflora	2 Or 10 to 15

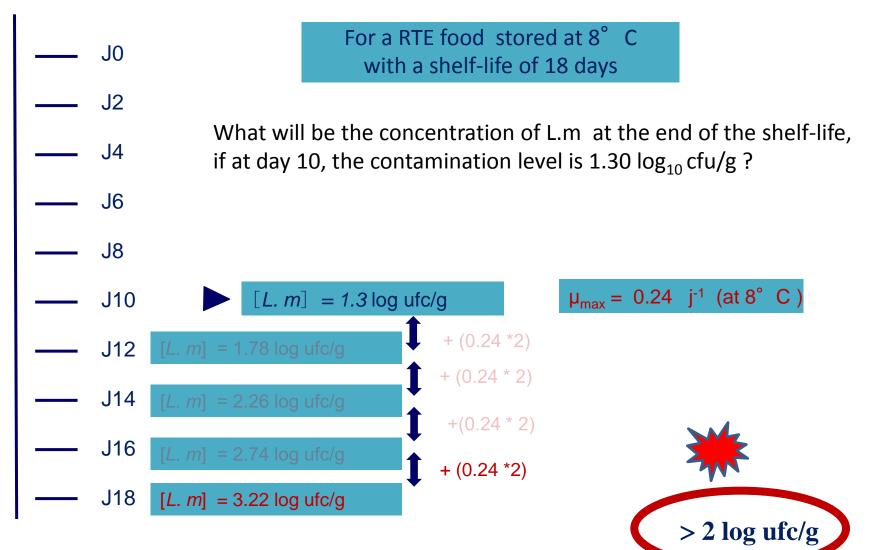

* only 1 unit, if the product is homogeneous

Storage condition

✤ At a fixed temperature, preferably close to the temperature chosen for the prediction


Calculation of the maximum growth rate (μ_{max})

- Results of the enumeration of L. monocytogenes are transformed in log₁₀ cfu/g
- μ_{max} can be estimated from the experimental growth curve by non linear regression


Exploitation of the results

✤ Knowing the value of µ_{max} at a temperature (T_{ref}), it is possible to predict µ_{max} at another temperature (T) in the same food

The prediction can be applied to any time-temperature profile

***** Use of the maximum growth rate: Example 1

Example 2: Growth of *L. m* during the shelf-life?

- Shelf-life = 12 days,
- Storage conditions = 4 days at 4°C and 8 days at 8°C,
- The estimated daily growth (μ_{max}) at 8°C \Rightarrow 0.14 log₁₀ cfu/g per day,
- The deduced daily growth (μ_{max}) at 4°C \Rightarrow 0.05 log₁₀ cfu/g per day.

Growth = 4 times the daily growth at $4^{\circ}C + 8$ times the daily growth at $8^{\circ}C$

Growth = $[4 \times (0.05)]$ + $[8 \times (0.14)]$ = 1.32 log₁₀ cfu/g

For the considered product, with such storage conditions, the growth of *L.m*, is estimated to: **1.32** \log_{10} cfu/g

Advantages vs disadvantages

- > Advantage:
 - It permits to assess the concentration of *L.m* at any point of the shelf-life.

Disadvantages:

- It is more expensive, more time-consuming than challenge test for δ .
- The lag phase and the stationary phase are not included in the calculations.

✤ Is a laboratory test based on the growth of a *L.m* in a food:

- Naturally contaminated
- Stored at foreseeable conditions

It is a end shelf-life own control, following a preservation of samples in reasonably foreseeable conditions

Technical guidance document on shelf-life studies for *Listeria monocytogenes* in RTE foods

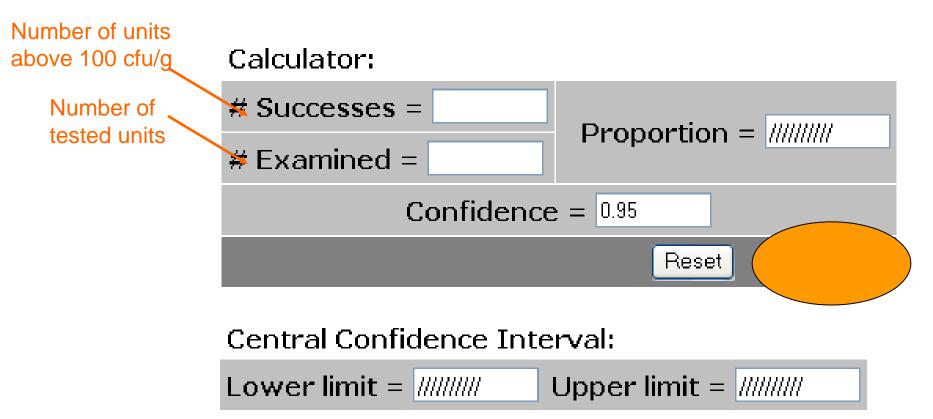
ISO 11290-2 or another validated method

ISO 11290-1 or another validated method

Technical guidance document on shelf-life studies for *Listeria monocytogenes* in RTE foods

Final Result

The result obtained is an estimation of the proportion of units above 100 cfu/g


Sampled units (of size *n*) taken randomly from a batch (of size N)

```
\rightarrow estimated proportion : p = r / n
```

number of units above 100 cfu/g

This proportion (p) is associated with a confidence interval

It can be obtained by a calculator for example; http://www.causascientia.org/math_stat/ProportionCl.html **Calculator**

Shortest Confidence Interval:

Lower limit = ////////

Workshop Listeria monocytogenes/ RTE Foods - Cyprus- 1 to 3 November 2011

Upper limit = ////////

Technical guidance document on shelf-life studies for *Listeria monocytogenes* in RTE foods

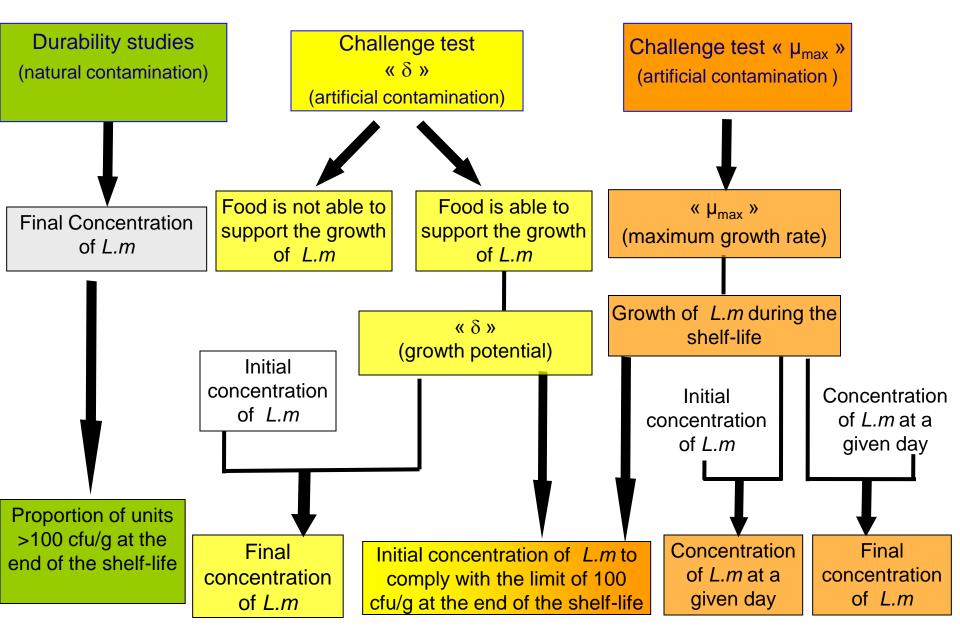
Confidence interval

n	r	р	CI
20	0	0%	[0% - 16%]
100		0%	[0% - 3.5%]
20	1	5%	[1% - 24%]
100		1%	[0.2% - 5%]
20	2	10%	[3% - 30%]
100		2%	[0.6% - 7%]

The more units that are analysed, the narrower the confidence interval

 \rightarrow ex: the upper limit of the confidence interval for "0 units exceeding 100 cfu/g out of 100 units" is lower than that obtained for "0 units exceeding 100 cfu/g out of 20 units".

To get a large number of analysed units: to **gather results** of repeated durability studies, performed for one RTE food obtained from the same process.


Technical guidance document on shelf-life studies for *Listeria monocytogenes* in RTE foods

Advantages vs disadvantages

>Advantage: it is more realistic than challenge tests, as the contamination is natural.

Disadvantage: the interpretation of the result may be difficult if the prevalence of the bacteria is low.

Data obtained at the end of these tests?

 \circ EU RL for *L*. *m* has written a document listing the points to be checked to be sure that CT assessing growth potential are implemented according to the technical guidance document.

• The document is named:

"Guidance document to evaluate laboratories implementing challenge tests on the growth potential of L. m in ready-to-eat foods "

○ It was written in collaboration with representatives of 12 NRLs for *L. m* from Belgium, Cyprus, Czech Republic, Denmark, Ireland, Latvia, Norway, Portugal, Slovenia, Spain, Sweden, The Netherlands.

 \circ It will be released by the end of the year.

Objective of the supporting document

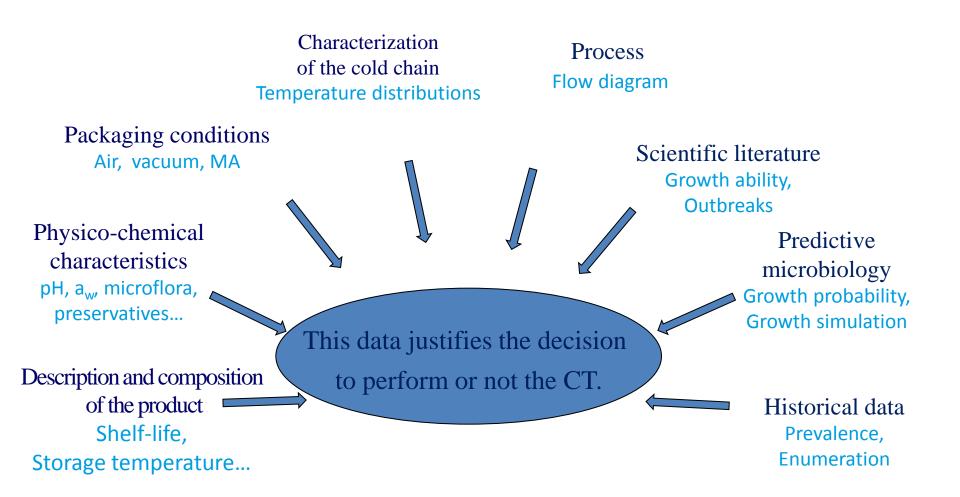
• To procure standard examination of laboratories performing challenge tests assessing the growth potential.

• Points of the guidance document:

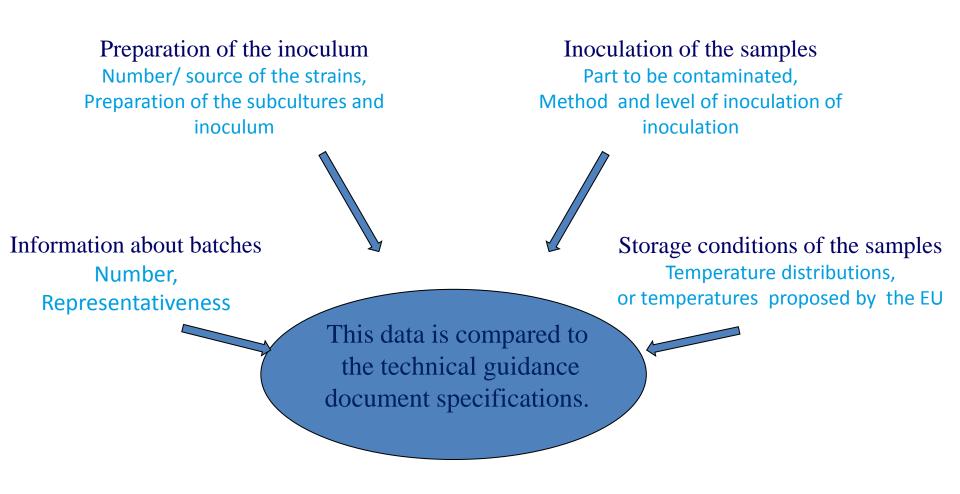
- General information related to the laboratory and the FBO
- Review of data provided by FBO
- Assessment of the technical skill of the laboratory conducting CT
- Use of the results
- Test report
- Conclusion

Who will use the "supporting document"?

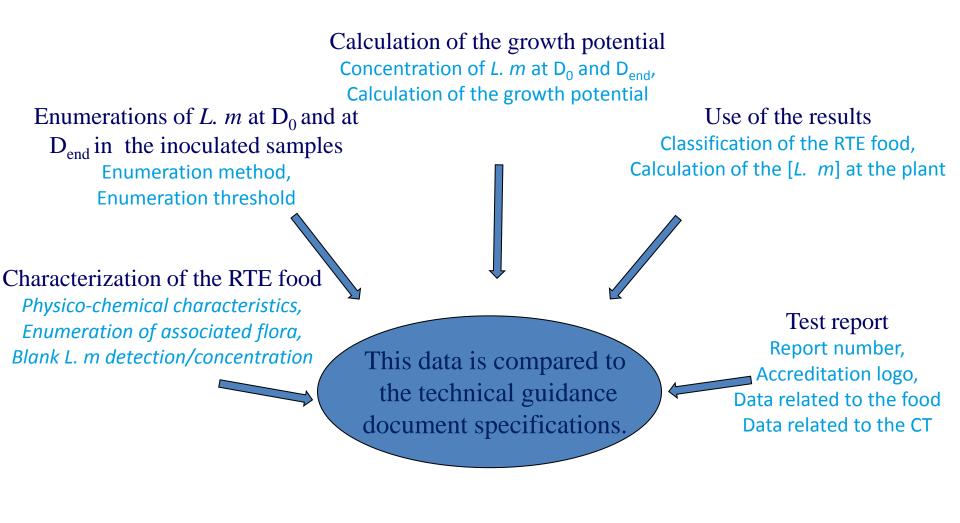
• Either experts basing their opinion on documents.


• Or auditors conducting audits in laboratories.

 \circ The laboratory has to be accredited according to ISO 17025, for the detection and enumeration of *L. monocytogenes*.


 \circ The laboratory has to get satisfactory results from PT trials for parameters such as pH, a_w , preservatives, microflora,...

The expert conducts a review of the data provided by the FBO



This data will help the laboratory to perform the CT.

The expert conducts a review of the "setting up" of the CT

The expert conducts a review of the results, their use and the test report

What is the final conclusion of the expert (or the auditor)?

• The laboratory is able to perform challenge tests assessing the growth potential

YES \square NO \square

 \circ The laboratory will be able to perform challenge tests provided that improvements are made on few points:

1.		
2.		
3.		
4.		
5.		

